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Abstract

A recent trend in exemplar based unsuper-
vised learning is to formulate the learning
problem as a convex optimization problem.
Convexity is achieved by restricting the set
of possible prototypes to training exemplars.
In particular, this has been done for cluster-
ing, vector quantization and mixture model
density estimation. In this paper we propose
a novel algorithm that is theoretically and
practically superior to these convex formu-
lations. This is possible by posing the un-
supervised learning problem as a single con-
vex “master problem” with non-convex sub-
problems. We show that for the above learn-
ing tasks the subproblems are extremely well-
behaved and can be solved efficiently.

1. Introduction

Methods for unsupervised learning aim at recovering
underlying structure from data. In this paper, we are
concerned with exemplar based models in which this
structure is represented by a weighted set of points
in input space. Depending on the used model, these
points can be interpreted as clusters, codebook vectors
or mixture components.

Although the representation is done by a finite point
set, the structure being represented – such as a den-
sity – is defined on the entire input space by expanding
a smoothing kernel function around each representing
point. In this setting learning simply becomes decid-
ing on the number of points and their weights, as well
as their location in input space by means of a suitable
objective. In EM-learning of mixture models and in
k-means clustering one fixes the number of points and
adjusts their position by performing descent steps on
the objective function starting from a random initial-
ization. This leads to well-behaved but usually non-
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convex learning problems. Recently, a number of con-
vex approaches have been proposed. Our goal in this
paper is to improve on these approaches.

In section 2 we review convex formulations for unsu-
pervised learning tasks and discuss two recent meth-
ods. We show how convexity is achieved and derive
a small experiment whose result suggests a way to
improve on the established models. We describe our
model in section 3 together with an algorithm and a
theoretical justification. The model is validated exper-
imentally in section 4 and we conclude in section 5.

2. Review of convex approaches

We now discuss two convex approaches to unsuper-
vised learning from the literature. We will denote the
training set as X = {xi}i=1,...,N , with xi ∈ X and
usually X = Rd.

Kernel Vector Quantization (Tipping & Schölkopf,
2001) learns a small set of codebook vectors such that
the minimum distance from any training sample to
its nearest codebook vector is bounded above by a
given maximum distortion h. In (Tipping & Schölkopf,
2001), this is done by formulating a linear program-
ming problem, of which the following problem is an
equivalent reformulation.1

max
q,ρ

ρ (1)

sb.t. Kq ≥ ρ1,
‖q‖1 = 1,
q ≥ 0.

Here K is a (N,N) matrix with Ki,j = I(‖xi −xj‖ ≤
h), where I(·) evaluates to one if the predicate is true
and to zero otherwise, therefore, Ki,j is one if a ball of
radius h centered on xj contains xi. In the solution
of (1) the balls selected by qj > 0 form a sparse cover-
ing of the training set and the distance of each sample
to its closest covering ball is bounded by h.

Convex Clustering (Lashkari & Golland, 2007) was re-

1Subject to rescaling of q.
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cently proposed for clustering. In Lashkari and Gol-
land’s model, a mixture model is fit to an observed
training set, such that a candidate mixture compo-
nent is centered around each training set exemplar.
Using the framework of Bregman clustering (Baner-
jee et al., 2005), their objective maximizes the log-
likelihood subject to the constraint that the resulting
model is a proper mixture model. In the optimum
solution of the model, a sparse set of exemplars is se-
lected, allowing the interpretation as clusters.

Formally, Lashkari and Golland maximize
1
N

∑N
i=1 log

[∑N
j=1 qje

−βdφ(xi,xj)
]

over the mixture

parameters qj ≥ 0, j = 1, . . . , N with
∑N
j=1 qj = 1.

The model allows all exponential family distribu-
tions with a corresponding Bregman divergence
dφ (Banerjee et al., 2005). For the maximization, a
multiplicative update is used, which leads to slow
convergence once elements of q approach zero. We re-
formulate the above objective function by introducing
a new set of variables γi, with i = 1, . . . , N as follows.

max
q,γ

1
N

N∑
i=1

log γi (2)

sb.t. Kq = γ, (3)
‖qj‖1 = 1,
qj ≥ 0, j = 1, . . . , N,

where K is a (N,N) matrix and Ki,j = e−βdφ(xi,xj).
Clearly, problem (2) is equivalent to the previous one
because constraints (3) only serve to evaluate the like-
lihood γi for each sample xi.

2.1. Where does Convexity come from?

Models as proposed in (Tipping & Schölkopf, 2001)
and (Lashkari & Golland, 2007) achieve convexity by
changing the problem parametrization. Instead of
learning the coordinates of a fixed number of exem-
plars zj , j = 1, . . . ,M , there is now a larger set of
possible candidate exemplars with fixed coordinates.
Learning is performed by optimizing over indicator
variables, selecting a sparse subset of the candidates.

This reparametrization makes the problem convex but
also changes the regularization: whereas usually the
number of exemplars M is the main regularization pa-
rameter, it is now an implicit guarantee on the quality
of the solution. In (Tipping & Schölkopf, 2001) this
is the maximum distortion h, whereas in (Lashkari &
Golland, 2007) the regularization parameter β controls
the smoothness of the density.
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Figure 1. Exemplar selection within the training set versus
the finest dense set of 900 exemplars on a regular grid. In
this toy example, there are 66 data points.

2.2. Motivating Experiment: More Exemplars

Restricting the set of possible prototype candidates to
the training set might result in a suboptimal solution
if there is no exemplar close to the true mean of a clus-
ter. If the data is low-dimensional, normal-distributed
within each cluster, has low noise and there are enough
training examples, this effect is small and can be ig-
nored. But in high dimensions the true mean might
be far away from any exemplar.

To demonstrate the effect of restricting the prototype
candidate set we perform an experiment. A simple
two-dimensional data set is created by sampling from
an isotropic Gaussian and a ring of uniform density,
forming two well-separated clusters, see Figure 1. We
compare convex clustering (Lashkari & Golland, 2007)
with a modified model where the objective is changed
to 1

N

∑N
i=1 log

[∑M
j=1 qje

−βdφ(xi,zj)
]
, with N training

samples xi and M cluster center candidates zj . This
convex objective still represents the log-likelihood of
the training samples under a mixture model. We gen-
erate zj by densely discretizing the [−2; 7]2 box on a
regular grid. Our hope is that a fine discretization
will increase the chance that {zj}j=1,...,M contains ex-
emplars close to the true center of each cluster. For
both models we use an isotropic multivariate normal
distribution with covariance matrix Σ = σ2I, σ = 2.5.

The clustering result is shown in Figure 1. For the
cluster around the origin there is indeed a training set
exemplar close to the mean of the generating Gaus-
sian and the difference between the convex clustering
and dense selection is small. However, for the ring-like
structure, the training set exemplars cannot represent
the cluster center adequately. This causes convex clus-
tering to select two exemplars, while in the dense set
a single good candidate is selected. A slight perturba-
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Figure 2. Training set vs. dense set log-likelihood.

tion in the training data would lead to a different se-
lection by the convex clustering method, as all samples
bordering to the interior of the ring are roughly equally
bad. For this data set, the solution produced by con-
vex clustering is not only qualitatively disappointing
but also unstable. The achieved objectives are shown
in Figure 2, where the convex clustering objective is
drawn as horizontal line and the dense exemplar model
forms a curve as the discretization becomes finer and
finer. At around eight discretizations per dimension
our modified model surpasses the log-likelihood of the
convex clustering model. At around 30 discretizations
per dimension the log-likelihood levels out and adding
more cluster candidates does not improve the solution.

This experiment suggests that a larger set of candi-
date clusters can lead to higher quality results which
are also more robust. While dense discretization is
only feasible in case the input space is low-dimensional,
ideally we would like to use an infinitely fine discretiza-
tion and thus use the set of all possible input points as
candidates. This idea will be the basis for our method.

3. A Decoupled Model

We now introduce our model for unsupervised learning
together with an efficient solution algorithm. Essential
to the solution is the ability to solve a certain subprob-
lem which we analyze in detail.

3.1. Model

Our model for unsupervised learning generalizes con-
vex clustering (Lashkari & Golland, 2007) and kernel
vector quantization (Tipping & Schölkopf, 2001). Let
kz(·) be a non-negative smoothing kernel centered at
z ∈ Z, with Z ⊆ X . Let {xi}i=1,...,N , xi ∈ X denote
the training set. The following semi-infinite convex
programming problem learns a convex combination of

response functions such that an objective is minimized.

min
q,γ,ρ

Ω(γ, ρ) (4)

sb.t.
∫
Z
qzkz(xi) dz = γi : αi, i = 1, . . . , N (5)

ρ ≤ γi : ωi, i = 1, . . . , N, (6)
qz ≥ 0 : µz, ∀z ∈ Z, (7)∫
Z
qz dz = 1 : σ, (8)

where α, ω, µ and σ are the Lagrange multipliers for
the respective constraints. Before discussing the choice
of objective function Ω, let us discuss the purpose of
the constraints.

• Constraint (5) evaluates a convex combination of
responses for each sample. γi contains the com-
bined response for sample xi.

• Constraint (6) identifies – if ∇ρΩ(γ, ρ) < 0 – the
lowest response among all samples. The value of
the lowest combined response is ρ.

• Constraints (7) and (8) define the combination
simplex of the response functions.

For the special case where Z is a finite set of points in
X , we can replace the integrals and infinite constraints
with a finite sum and finite set of constraints, respec-
tively. Constraints (5) can then be compactly written
as Kq = γ, where K is a (N, |Z|) matrix storing the
kernel responses. The dual problem of (4) can be de-
rived from the conjugate function Ω∗(α, σ,ω,µ) and
its respective domain (Boyd & Vandenberghe, 2004,
result (5.11)). The dual problem is

max
α,σ,ω,µ

−Ω∗(α, σ,ω,µ)− σ (9)

sb.t. (α, σ,ω,µ) ∈ dom(Ω∗),
N∑
i=1

αikz(xi) ≥ µz − σ, ∀z ∈ Z

ω ≥ 0 (10)
µz ≥ 0, ∀z ∈ Z

We propose the following choices of convex objective
functions Ω(γ, ρ).

1. Ω(γ, ρ) = −ρ
The objective states that the lowest response
among all samples is to be maximized. All other
samples have equal or higher responses but are ig-
nored by this objective, hence a single exemplar
can have a large influence on the overall objec-
tive. The KVQ problem (1) corresponds to this
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objective with K chosen as discussed in section 2.
The conjugate is Ω∗(α, σ,ω,µ) = 0 and domain
dom(Ω∗) = {(α, σ,ω,µ) : ω +α ≤ 0,ω>1 = 1}.
With (10) we have α ≤ 0.

2. Ω(γ, ρ) = − 1
N

∑N
i=1 log(γi)

This objective maximizes
∏N
i=1 γi. For the spe-

cial case where the columns of K correspond
to evaluations of probability density functions
at the training samples this objective maxi-
mizes the log-likelihood of the samples under
a mixture model, resulting in convex cluster-
ing (2). A single exemplar can have a sig-
nificant effect on the overall objective, but all
sample responses are considered, contrasting the
previous objective function. The conjugate is
Ω∗(α, σ,ω,µ) = − 1

N

∑N
i=1 log(−αi) + log(N)

with domain dom(Ω∗) = {(α, σ,ω,µ) : α <
0,ω = 0}.

3. Ω(γ, ρ) = −ρ+ C
N

∑N
i=1 (γi − ρ)2

The objective maximizes the margin ρ while pe-
nalizing large deviations from the margin, where
the penalty strength is determined by C ≥ 0. The
objective may prefer a smaller margin if the cor-
responding choice of q leads to a more uniform
γi. This margin-minus-variance (MMV) objec-
tive was first proposed in (Rückert & Kramer,
2006) for supervised learning.

4. Ω(γ, ρ) = − 1
N

∑N
i=1 γi+

C
N

∑N
i=1(γi− 1

N

∑N
i=1 γi)

2

The objective maximizes the mean response while
penalizing large deviations from it, where the
penalty strength is determined by C ≥ 0. This
maximizes the mean-minus-variance popular in
applications such as portfolio optimization, see for
example (Cornuejols & Tütüncü, 2007).

In order to be able to compare our method with es-
tablished methods from the literature we only use the
first two objectives in the experiments.

3.1.1. Relation to existing methods.

Most relevant for our approach is Boosting Density Es-
timation (Rosset & Segal, 2002). We note the follow-
ing differences, i) our model includes different objec-
tives, ii) in our solution algorithm, we will use totally-
corrective weight updates2 instead of a simple line-
search procedure, and iii) we identify each weak learner
uniquely with a point in input space. Also related is
the hard-margin case of 1-class Boosting (Rätsch et al.,
2001). With exemplar-based weak learners it is a spe-
cial case of our model with the first objective.

2Totally-corrective steps update all weights individually
in each iteration, leading to faster convergence.

Algorithm 1 Infinite Exemplar Column Generation
(Z, q) = Infex(X, ε, k, Z0)
Input:

Sample set X = {xi}i=1,...,N , xi ∈ X
Convergence tolerance ε > 0
Non-negative smoothing kernel kz : Z×X → R+

Initial exemplar set Z0 = {zj}j=1,...,|Z0|, zj ∈ Z
Output:

Column exemplar set Z = {zj}j=1,...,R, zj ∈ Z
Weightings qzj ∈ R+, j = 1, . . . , R

Algorithm:
α← − 1

N 1, Z ← Z0, R← |Z0|+ 1, δ ←∞, σ∗ ← 0
loop
zR ← argmaxz∈Z −

∑N
i=1 αikz(xi) {(SP)}

δ ← σ∗ −
∑N
i=1 αikzR(xi) {Compute ∇zR}

if δ < ε then
break {convergence to tolerance}

end if
Z ← Z ∪ {zR}
K ←

[
kzj (xi)

]
i=1,...,N, j=1,...,R

{response matrix}
p∗R, (q∗R,γ

∗, ρ∗), (α∗,ω∗,µ∗R, σ
∗) ←

objective value, primal- and dual-solution to
problem (4) with finite (N,R) matrix K.

R← R+ 1
end loop

3.2. Algorithm

To solve problem (4), we propose Algorithm 1 (IN-
FEX), a delayed column generation algorithm. The
algorithm works with a finite and usually small set of
candidate prototypes zj . This set is iteratively en-
larged by adding good candidates. Selecting the can-
didates to add in each iteration becomes a subproblem,
which we define now.

Problem 1 (Subproblem (SP)) Given a set of
samples xi ∈ X , i = 1, . . . , N , a corresponding non-
positive sample weighting αi ≤ 0, i = 1, . . . , N and a
non-negative smoothing kernel kz(x) : Z × X → R+,
obtain z∗ as the solution of

z∗ = argmaxz∈Z −
N∑
i=1

αikz(xi).

The solution to this subproblem provides a candidate
z∗ that, when added to the set of considered candi-
dates, will reduce the global objective.3 We will now
rigorously derive the subproblem from global optimal-
ity conditions of problem (4).

3In the optimization literature such columns are re-
ferred to as having negative reduced cost. The overall de-
coupled solution approach is closely related to the general-
ized Benders decomposition (Geoffrion, 1972).
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Theorem 1 Assume that the subproblem (SP) can be
solved exactly in each iteration. Then Algorithm 1
solves problem (4) globally to the desired accuracy ε.

Proof. Consider a slightly modified version of prob-
lem (4), where a part of the constraints (7) is replaced
by equality constraints. We replace (7) by the fol-
lowing constraint set, parametrized by a finite set of
points ZR = {z1, . . . ,z|ZR|}.

qz ≥ 0 : µz, ∀z ∈ ZR, (11)
qz = vz : µz, ∀z ∈ Z \ ZR, (12)

where vz = 0 is constant for all z ∈ Z \ZR. Together,
constraints (11) and (12) restrict problem (4) such that
only a finite subset of the variables q are used.

For a given finite ZR, we can obtain an optimal primal
(q∗,γ∗, ρ∗), and dual (α∗,ω∗,µ∗, σ∗) solution to the
modified problem by solving a finite problem in the
restricted set of variables {qz : z ∈ ZR}. Let the
optimal function value of this solution be denoted by
p(v). Because the optimal solution must be feasible,
we have q∗z = vz = 0 for all z ∈ Z \ ZR. How would
the objective function value p(v) change if we force
a q∗z to become non-zero? That is, if we increase vz
by a very small amount can we improve the solution?
The sensitivity theorem (Bertsekas, 1999, Proposition
3.3.3) provides a definite answer, namely we have for
all z ∈ Z \ ZR the following.

∇vz
p(v) = −µ∗z.

If we have for all z ∈ Z \ ZR that ∇vzp(v) ≥ 0, then
this implies that we can not decrease p(v) by making
qz > 0. Conversely, this observation provides us with a
global optimality condition: if and only if ZR contains
all relevant (positive qz) exemplars, we have ∀z ∈ Z \
ZR : µ∗z ≤ 0. Given ZR and a primal-dual optimal
solution we can find an alternative expression for µ∗z.
Consider the Lagrangian of the modified problem.

L(q,γ, ρ,α,ω,µ, σ) = Ω(γ, ρ)

+
N∑
i=1

αi

(∫
Z
qzkz(xi) dz − γi

)
+ ω>(ρ1− γ)

−
∑
z∈ZR

µzqz +
∫
Z\ZR

µzqz dz

+ σ(
∑
z∈ZR

qz +
∫
Z\ZR

qz dz − 1)

Because of optimality of the solution, it must
satisfy the Karush-Kuhn-Tucker necessary condi-
tions (Bertsekas, 1999), therefore we must have a
zero gradient with respect to the primal variables.

Specifically, for all z ∈ Z \ ZR we must have
∇qz
L(q∗,γ∗, ρ∗,α∗,ω∗,µ∗, σ∗) =

∑N
i=1 α

∗
i kz(xi) +

µ∗z + σ∗ = 0. This allows us to express µ∗z as

µ∗z = σ∗ −
N∑
i=1

α∗i kz(xi). (13)

Therefore, if for all z ∈ Z \ ZR we have dual feasible
µ∗z ≤ 0, then the current solution is optimal, despite
the restrictions imposed by constraints (12). If we sat-
isfy the optimality condition, then replacing (12) with
constraints (11), does not change the solution, which
remains optimal in the original problem (4).

What remains to be shown is that Algorithm 1
makes progress in each iteration and thus in the limit
will satisfy the optimality condition. Consider the
case where the above optimality condition is violated
for one or more z ∈ Z \ ZR. Then, let z∗ =
argmaxz∈Z\ZR

(
σ∗ −

∑N
i=1 α

∗
i kz(xi)

)
be the sample

corresponding to the most negative partial derivative
∇vz∗p(v) < 0. Because of the sensitivity theorem,
adding z∗ to ZR – making qz∗ a free variable – and
re-solving (4) will reduce the objective value. There-
fore, either no z∗ with ∇vz∗p(v) < −ε is found and
convergence to the tolerance is established, or a strict
decrease in the objective is obtained. �

Note that in practice, we can add multiple exemplars
in each iteration. Suppose during solving the subprob-
lem (SP) we obtain a number of good local maximizers.
Then, we can add all these local maximizers in order
to obtain a faster convergence. Adding redundant ex-
emplars with ∇vzp(v) > 0 does not have an effect as
they will receive a zero weight qz = 0.

3.3. On the Nature of the Subproblem

The subproblem (SP) is completely determined by the
negative weighting of the training set and the shape of
the smoothing kernel function. For further discussion
let us define ηi = −αi and rewrite the subproblem as
argmaxz∈Z

∑N
i=1 ηik(xi, z). From the definition it fol-

lows that all ηi are non-negative. Clearly, this problem
is non-concave whenever k is non-concave in z which
is true for all smoothing functions we consider.

However, for kernel functions of the form kz(x) =
k(‖x − z‖), the optima of the subproblem, thus the
new candidates, are located at the modes of the ex-
pansion

∑N
i=1 ηikz(xi). It is this fact that can be

exploited to efficiently solve the subproblem by stan-
dard hill-climbing algorithms. Such algorithms start
at a point z(0) in input space and generate iteratively
better candidates such that

∑N
i=1 ηikz(t+1)(xi) >∑N

i=1 ηikz(t)(xi). In this paper, we use the weighted
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mean shift procedure which was introduced by (Fuku-
naga & Hostetler, 1975; Cheng, 1995) and gained pop-
ularity due to (Comaniciu & Meer, 2002). Given an
initial starting point z(0) the iterates are produced by

z(t+1) =

∑N
i=1 αig

(∥∥∥z(t)−xi
h

∥∥∥2
)
xi∑N

i=1 αig

(∥∥∥z(t)−xi
h

∥∥∥2
) , (14)

where g : R+ → R+ is the negative derivative of the
so called kernel profile. If for a continuous kernel the
function g is convex and non-increasing, then the mean
shift procedure is guaranteed to converge to a local
maxima (Comaniciu & Meer, 2002). For each of the
common continuous smoothing kernels, a unique func-
tion g exists and some popular kernels and their profile
derivatives are discussed in section 4. For the Gaus-
sian kernel, g is a scaled version of the original kernel
profile and thus particularly easy to maximize.4 Mean
shift is popular in computer vision, where specialized
procedures have been developed to efficiently find glob-
ally good modes, for example the annealed mean shift
procedure (Shen et al., 2007).

If the smoothing kernel function is a reproducing
Hilbert kernel (Schölkopf & Smola, 2002), then prob-
lem (SP) is known as the pre-image problem (Schölkopf
et al., 1999). An important difference which simplifies
our subproblem considerably is that all our weights α
are of the same sign. In the general pre-image problem
the sign is not fixed and procedures such as the one
of (Schölkopf et al., 1999) can be unstable and do not
have a convergence guarantee.

3.4. Optimality Bound

The proof of global optimality of the solution obtained
by Algorithm 1 was based on the assumption that the
subproblem (SP) can be solved globally. We now show
that even without this assumption, the method can be
no worse than methods using a fixed exemplar set.

Theorem 2 Given Ω(γ, ρ), a set X = {xi}i=1,...,N ,
xi ∈ X and a finite set of exemplars ZF =
{zj}j=1,...,M , the solution obtained by solving prob-
lem (4) with Z = ZF can not achieve a better objective
than the solution obtained by Algorithm 1 with Z = X ,
Z0 = ZF .

4The Gaussian kernel has received special attention in
the literature. In (Carreira-Perpiñán, 2000) it was conjec-
tured that the number of modes in a Gaussian mixture is
bounded above by the number of components. While this
is true in the univariate case, this has been proven wrong
in general in (Carreira-Perpiñán & Williams, 2003). See
also the counter-example at http://www.inference.phy.
cam.ac.uk/mackay/gaussians/.

Proof. Let Algorithm 1 be called with Z0 = ZF . In
the first iteration of Algorithm 1, the solved problem
is identical to problem (4) with Z = ZF . Therefore,
after the first iteration, the objective of Algorithm 1 is
equal to the one obtained by solving problem (4). In
all later iterations, the objective can only improve. �

4. Experiments and Results

For the following experiments, we solve the restricted
master problem (4) using IpOpt (Wächter & Biegler,
2006), a modern primal-dual interior point solver for
non-linear programming available as open-source. For
each master problem, we obtain accurate convergence
in a few dozen solver iterations. We use tolerances
10−10 for the restricted master problem and 10−7 for
the subproblems for all experiments.5

As smoothing kernels we use the unnormalized Gaus-
sian, the unnormalized Epanechnikov, and a simple
uniform disc kernel. All are parametrized by a band-
width parameter h. The following are the kernel func-
tions k and profiles g used in the mean shift procedure.

1. Gaussian, bandwidth h

kz(x) = e−
1
2‖x−z

h ‖
2

, g(y) =
1

2
e−

1
2 y

2. Epanechnikov, bandwidth h

kz(x) =


1−

‚‚ x−z
h

‚‚2 ‚‚ x−z
h

‚‚ ≤ 1
0 otherwise

g(y) =


1 0 ≤ y ≤ 1
0 y > 1

3. Uniform disc, maximum distortion h

kz(x) =


1

‚‚ x−z
h

‚‚ ≤ 1
0 otherwise

The first two kernels are common in non-parametric
density estimation, whereas the last one is used
by (Tipping & Schölkopf, 2001) for vector quantiza-
tion. We use the mean shift procedure (14) started
from all training samples to solve the subproblem (SP)
for the Gaussian and Epanechnikov kernels. We col-
lect the result of each run and add the set of unique
local maximizers to the restricted master problem.

However, mean shift cannot be used to solve subprob-
lem (SP) for the non-continuous uniform disc kernel.
Instead, when using the uniform disc kernel, we find
new codebook candidates by solving the subproblem
with the Epanechnikov kernel instead. This is a rea-
sonable approximation as the Epanechnikov kernel re-
sponse lower bounds the uniform disc kernel response
and its maximum lies in the center of the disc.

5Our implementation is available at http://www.kyb.
mpg.de/bs/people/nowozin/infex/.
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4.1. Comparison with KVQ

In the first experiment we compare the original Ker-
nel Vector Quantization formulation (1) with all train-
ing exemplars as possible prototypes with our Algo-
rithm 1, where the initial set is empty, ZR = ∅. We
use the first objective Ω(γ, ρ) = −ρ and the uniform
disc kernel. As dataset we use a subset of 1100 exem-
plars from the USPS digit machine learning dataset,
with all labels removed and each class sampled equally
such that there are 110 exemplars from each class. We
evaluate by selecting the maximum allowed distortion
h from {800, 1000, 1200, 1400, 1600, 1800, 2000}, where
≈ 2000 is the mean inter-class L2-distance in the
dataset. We compare the achieved margin ρ∗KVQ(h)
with ρ∗INFEX(h), and the number of codebook vectors
‖q∗KVQ‖0 with ‖q∗INFEX‖0. Figures 3 and 4 show these
as the maximum allowed distortion is varied.

The proposed method outperforms KVQ, selecting a
smaller number of codebook vectors and achieving a
better objective value. Especially for larger allowed
distortions, the benefit of selecting an arbitrary point
in input space is substantial as due to the high dimen-
sionality of the data set all input samples are relatively
far away from each other. Because we use ZR = ∅ to
initialize our method, the results show that our sub-
problem approximation using the Epanechnikov kernel
is an effective way to find good codebook candidates.

4.2. Comparison with Gaussian Mixture EM

In the second experiment we consider mixture model
density estimation and compare our method with Con-
vex Clustering and a homoscedastic Gaussian mix-
ture (Σ = σ2I) learned with Expectation Maximiza-
tion (EM).6 The log-likelihood objective and the same
USPS dataset as before is used. The experimental pro-
tocol is as follows. For a range of bandwidths our
model and convex clustering are run once per band-
width. For each run, the number of components of
our model is used to fix the number of components in
the Gaussian mixture model, which is trained by EM
starting 20 times from random initial sample points.
The results are shown in Table 1. Clearly, a single run
of our model is consistently the best. The best EM run
is always close to our result and Convex Clustering is
always the worst. (Lashkari & Golland, 2007) mention
that their solution “can be improved in practice with
a few extra steps of the EM algorithm”. From Table 1,
we conclude that the results of convex clustering are
qualitatively inferior to plain EM and such refitting is
actually essential for obtaining good results.

6A similar experiment is in (Lashkari & Golland, 2007).

4.3. Subproblem Modes

In the last experiment we show the qualitative behav-
ior of our model with the Epanechnikov kernel with
h = 1500 and the log-likelihood objective. Because
the Epanechnikov kernel has finite support, if we start
with Z0 = ∅ we could have some samples xi which have
zero response because kzj (xi) = 0 for all j. Then, the
restricted variables qj are too few and problem (4)
would be infeasible. Thus, in order to ensure feasi-
bility of the initial master problems, we use Z0 = X.
Some subproblem modes are shown in Figure 5. The
modes approximate the “natural” clusters well except
for classes such as 3, 8 and 9, which seem to be ex-
plained by one joint region with many local modes in
it, for example in the first and second row.

5. Discussion and Conclusion

We presented a unifying perspective on existing ex-
emplar based methods that aim at density estimation,
clustering and vector quantization. Existing methods
were either non-convex or achieved convexity by se-
vere restrictions. In contrast, our approach – although
still non-convex as a whole – is provable better than
all existing methods. This is achieved by isolating
a non-convex but still efficient solvable subproblem.
The non-convex subproblem is embedded into a convex
master problem steering towards an optimal solution.

One limitation of our model is that one cannot fix
‖q∗‖0, the number of components. For problems where
guarantees such as maximum distortion or smoothness
are more natural constraints, this is not an issue.

There are open questions that result from our work:

1. Does there exists a response function k that is
useful for unsupervised learning and at the same
time yields a globally solvable subproblem?

2. What is the relation between objective Ω, kernel
k and number of components ‖q∗‖0?

Table 1. Achieved log-likelihoods. CC is Convex Cluster-
ing; for EM the best and mean of 20 runs are shown.

σ CC Infex EM best EM mean

440 −6.3356 -5.1370 −5.1442 −5.1485
460 −6.1269 -4.7424 −4.7486 −4.7503
480 −5.8705 -4.3796 −4.3823 −4.3834
500 −5.5813 -4.0499 −4.0507 −4.0520
520 −5.2780 -3.7499 −3.7502 −3.7512
540 −4.9779 -3.4788 −3.4789 −3.4795
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Figure 3. Optimal margin ρ∗ as a func-
tion of the maximum allowed distor-
tion. Note the log-scale.
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Figure 4. The number of selected pro-
totypes as a function of the maximum
allowed distortion.

Figure 5. Subproblem modes found in
different iterations.

3. Can a decomposition similar to ours yield a train-
ing scheme for supervised learning of RBF net-
works in the line of (Bengio et al., 2005)?
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